题目内容

已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值为(  )
A、-5B、-1C、-3D、5
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:根据函数奇偶性的性质,建立方程关系即可得到结论.
解答: 解:令F(x)=h(x)-2=af(x)+bg(x),
则F(x)为奇函数.
∵x∈(0,+∞)时,h(x)≤5,
∴x∈(0,+∞)时,F(x)=h(x)-2≤3.
又x∈(-∞,0)时,-x∈(0,+∞),
∴F(-x)≤3?-F(x)≤3
?F(x)≥-3.
∴h(x)≥-3+2=-1,
故选B.
点评:本题主要考查函数单调性的判断,根据函数的奇偶性构造函数是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网