题目内容

9.若x,y满足$\left\{\begin{array}{l}x+y≤4\\ x-2y≥0\\ x+2y≥4\end{array}\right.$,则$z=\frac{y-4}{x-3}$的取值范围是(  )
A.(-∞,-4]∪[3,+∞)B.(-∞,-2]∪[-1,+∞)C.[-2,-1]D.[-4,3]

分析 作出不等式组对应的平面区域,利用z的几何意义结合直线的斜率公式进行求解即可.

解答 解:作出不等式组对应的平面区域,
$z=\frac{y-4}{x-3}$的几何意义是区域内的点到定点(3,4)的斜率
由图象知z大于等于PA的斜率,z小于等于PB的斜率,
∵A(2,1),B(4,0),
∴$z=\frac{y-4}{x-3}$=$\frac{1-4}{2-3}$≥3;则$z=\frac{y-4}{x-3}$=$\frac{0-4}{4-3}$≤-4,
即,(-∞,-4]∪[3,+∞).
故选:A.

点评 本题主要考查线性规划的应用,利用直线斜率的几何意义以及数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网