题目内容
9.若x,y满足$\left\{\begin{array}{l}x+y≤4\\ x-2y≥0\\ x+2y≥4\end{array}\right.$,则$z=\frac{y-4}{x-3}$的取值范围是( )| A. | (-∞,-4]∪[3,+∞) | B. | (-∞,-2]∪[-1,+∞) | C. | [-2,-1] | D. | [-4,3] |
分析 作出不等式组对应的平面区域,利用z的几何意义结合直线的斜率公式进行求解即可.
解答
解:作出不等式组对应的平面区域,
$z=\frac{y-4}{x-3}$的几何意义是区域内的点到定点(3,4)的斜率
由图象知z大于等于PA的斜率,z小于等于PB的斜率,
∵A(2,1),B(4,0),
∴$z=\frac{y-4}{x-3}$=$\frac{1-4}{2-3}$≥3;则$z=\frac{y-4}{x-3}$=$\frac{0-4}{4-3}$≤-4,
即,(-∞,-4]∪[3,+∞).
故选:A.
点评 本题主要考查线性规划的应用,利用直线斜率的几何意义以及数形结合是解决本题的关键.
练习册系列答案
相关题目
19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线方程为y=$\frac{4}{3}$x,则双曲线的离心率为( )
| A. | $\frac{5}{3}$ | B. | $\frac{5}{3}$ 或$\frac{5}{4}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{2}$ |
4.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且当x∈(-1,1]时,f(x)=|x|,则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是( )
| A. | 2 | B. | 4 | C. | 6 | D. | 多于6 |
14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线为$y=-\sqrt{2}x$,且一个焦点是抛物线y2=12x的焦点,则该双曲线的方程为( )
| A. | $\frac{y^2}{3}-\frac{x^2}{6}=1$ | B. | $\frac{x^2}{3}-\frac{y^2}{6}=1$ | C. | $\frac{x^2}{6}-\frac{y^2}{3}=1$ | D. | $\frac{y^2}{6}-\frac{x^2}{3}=1$ |
18.中心在原点,焦点在x轴上,焦距等于12,离心率等于$\frac{3}{5}$,则此椭圆的方程是( )
| A. | $\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1 | B. | $\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1 | C. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1 |
19.已知定点M(-3,0),N(2,0),如果动点P满足|PM|=2|PN|,则点P的轨迹所包围的图形面积等于( )
| A. | $\frac{100π}{9}$ | B. | $\frac{142π}{9}$ | C. | $\frac{10π}{3}$ | D. | 9π |