题目内容

如图,四棱锥P-ABCD的底面为正方形,AC∩BD=O,PO⊥平面ABCD,E、F、G分别是PO、AD、AB的中点.
(Ⅰ)求证:PC⊥平面EFG;
(Ⅱ)若AB=1,求三棱锥O-EFG的高.
考点:棱锥的结构特征,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)设FG∩AC=H,连结EH,由已知条件推导出AP⊥PC,EH⊥PC,FG⊥PC,由此能证明PC⊥平面EFG.
(Ⅱ)由VO-EFG=VE-FOG得三棱锥O-EFG的高.
解答: (Ⅰ)证明:设FG∩AC=H,连结EH,
在Rt△ABC中,AB=BC,且AB2+BC2=AC2
在△PAC中,PA=PC=AB,
PA2+PC2=AC2,∴AP⊥PC,
E、F、G分别是PO、AD、AB的中点,
FG∥BD,
∴H为AO中点,
∴EH∥PA,故EH⊥PC,
∵四边形ABCD是正方形,∴BD⊥AC,
∴FG⊥AC,
∵PO⊥平面ABCD,∴PO⊥FG
∵PO∩AC=O,∴FG⊥平面PAC,
∴FG⊥PC,
∵FG∩EH=H,
∴PC⊥平面EFG;
(Ⅱ)解:设三棱锥O-EFG的高为h,则
由VO-EFG=VE-FOG
1
3
×
1
2
×
2
2
×
1
2
h
=
1
3
×
1
2
×
2
2
×
2
4
×
1
3

∴h=
1
4
点评:本题考查直线与平面垂直的证明,考查三棱锥体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网