题目内容
10.已知函数f(x)=x2+2x(x>0),f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,则f5(x)在[1,2]上的最大值是( )| A. | 210-1 | B. | 232-1 | C. | 310-1 | D. | 332-1 |
分析 易知f(x)=x2+2x=(x+1)2-1在(0,+∞)上是增函数,且f(x)>0;从而依次代入化简即可.
解答 解:f(x)=x2+2x=(x+1)2-1在(0,+∞)上是增函数,且f(x)>0;
f1(x)=f(x)=x2+2x,
故f1(x)max=32-1,
f2(x)max=f(f1(x)max)=f(32-1)=(32-1+1)2-1=34-1,
f3(x)max=f(f2(x)max)=f(34-1)=(34-1+1)2-1=38-1,
f4(x)max=f(f3(x)max)=f(38-1)=(38-1+1)2-1=316-1,
f5(x)max=f(f4(x)max)=f(316-1)=(316-1+1)2-1=332-1,
故选D.
点评 本题考查了函数的性质的判断与应用及整体思想的应用.
练习册系列答案
相关题目
20.为了了解高二男生体重情况,某中学从高二男生中随机测量了M名男生的体重,所得数据整理后列出了频率分布表如下:
(1)求a,b,M,N的值.
(2)画出频率分布直方图和折线图
(3)估计该校高二男生的平均体重是多少?
| 组 别 | 频数 | 频率 |
| [52,56) | 1 | 02 |
| [56,60) | 4 | 08 |
| [60,64) | 20 | 40 |
| [64,68) | 15 | 30 |
| [68,72) | 8 | 16 |
| [72,76) | a | b |
| 合 计 | M | N |
(2)画出频率分布直方图和折线图
(3)估计该校高二男生的平均体重是多少?
1.若$m=tan{20^o}+tan{40^o}+\sqrt{3}tan{20^o}tan{40^o}$,则m=( )
| A. | $-\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |
15.飞机沿水平方向飞行,在A处测得正前下方地面目标C的俯角为30°,向前飞行10000米到达B处,此时测得正前下方目标C的俯角为75°,这时飞机与地面目标的水平距离为( )
| A. | 2500($\sqrt{3}-1$)米 | B. | 5000$\sqrt{2}$米 | C. | 4000米 | D. | 4000$\sqrt{2}$米 |
2.将一颗质地均匀的骰子(一种各面上分别标有1、2、3、4、5、6的正方体玩具),先后抛掷3次,至少出现一次4点向上的概率是( )
| A. | $\frac{5}{216}$ | B. | $\frac{31}{216}$ | C. | $\frac{91}{216}$ | D. | $\frac{25}{216}$ |
6.下列各式正确的是( )
| A. | $\root{6}{{{{(-3)}^2}}}=\root{3}{-3}$ | B. | $\root{4}{a^4}=a$ | C. | $\root{6}{2^2}=\root{3}{2}$ | D. | a0=1 |