题目内容

10.设函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x2-x+1,则f(1)=(  )
A.1B.2C.3D.4

分析 根据条件即可得到$\left\{\begin{array}{l}{f(x)-g(x)={x}^{2}-x+1}\\{f(x)+g(x)={x}^{2}+x+1}\end{array}\right.$,从而可解出函数f(x)的解析式,从而便可求出f(1)的值.

解答 解:根据条件,f(-x)=f(x),g(-x)=-g(x);
∴由f(x)-g(x)=x2-x+1①得,f(-x)-g(-x)=x2+x+1=f(x)+g(x);
即f(x)+g(x)=x2+x+1②;
①+②得,2f(x)=2(x2+1);
∴f(x)=x2+1;
∴f(1)=2.
故选:B.

点评 考查偶函数、奇函数的定义,构造关于f(x),g(x)的方程组解f(x)的解析式的方法,已知函数求值的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网