题目内容
函数y=2sin(x+
)+
cos(x+
)的最大值为( )
| π |
| 12 |
| 2 |
| π |
| 3 |
A、
| ||
B、
| ||
C、2+
| ||
D、
|
分析:函数y=2sin(x+
)+
cos(x+
+
),利用两角和的余弦公式可得y=sin(x+
)+cos(x+
)=
sin(x+
),从而求得函数的最大值.
| π |
| 12 |
| 2 |
| π |
| 12 |
| π |
| 4 |
| π |
| 12 |
| π |
| 12 |
| 2 |
| π |
| 3 |
解答:解:函数y=2sin(x+
)+
cos(x+
)=2sin(x+
)+
cos(x+
+
)
=2sin(x+
)+
[cos(x+
)•
-sin(x+
)•
]=sin(x+
)+cos(x+
)
=
sin(x+
+
)=
sin(x+
),故函数的最大值等于
,
故选 B.
| π |
| 12 |
| 2 |
| π |
| 3 |
| π |
| 12 |
| 2 |
| π |
| 12 |
| π |
| 4 |
=2sin(x+
| π |
| 12 |
| 2 |
| π |
| 12 |
| ||
| 2 |
| π |
| 12 |
| ||
| 2 |
| π |
| 12 |
| π |
| 12 |
=
| 2 |
| π |
| 12 |
| π |
| 4 |
| 2 |
| π |
| 3 |
| 2 |
故选 B.
点评:本题考查两角和正弦公式及余弦公式的应用,正弦函数的值域,角的变换是解题的难点.
练习册系列答案
相关题目
函数y=2sin(
-x)-cos(
+x)(x∈R)的最小值等于( )
| π |
| 3 |
| π |
| 6 |
| A、-3 | ||
| B、-2 | ||
C、-
| ||
| D、-1 |