题目内容

20.已知$α-β=\frac{π}{3},tanα-tanβ=3$,则cos(α+β)的值为$\frac{\sqrt{3}}{3}-\frac{1}{2}$.

分析 “切化弦”的思想,根据tanα-tanβ=$\frac{sinα}{cosα}-\frac{sinβ}{cosβ}=\frac{sin(α-β)}{cosαcosβ}$=3,α-β=$\frac{π}{3}$,求出cosαcosβ,在利用和与差求sinαsinβ,即可求cos(α+β)的值.

解答 解:tanα-tanβ=$\frac{sinα}{cosα}-\frac{sinβ}{cosβ}=\frac{sin(α-β)}{cosαcosβ}$=3,α-β=$\frac{π}{3}$,
∴cosαcosβ=$\frac{\sqrt{3}}{6}$.
cos(α-β)=cosαcosβ+sinαsinβ=$\frac{1}{2}$,
∴sinαsinβ=$\frac{1}{2}-\frac{\sqrt{3}}{6}$
那么:cos(α+β)=cosαcosβ-sinαsinβ=$\frac{\sqrt{3}}{3}-\frac{1}{2}$.
故答案为$\frac{\sqrt{3}}{3}-\frac{1}{2}$.

点评 本题考查了“切化弦”的思想和和与差的公式的灵活运用.考查了计算能力.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网