题目内容

已知x,y满足
x≥1
x+y≤4
x+by+c≤0
记目标函数z=2x+y的最小值为1,最大值为7,则b,c的值分别为(  )
A、-1,-2B、-2,-1
C、1,2D、1,-2
考点:简单线性规划
专题:计算题,作图题,不等式的解法及应用
分析:由题意作出其平面区域,将z=2x+y化为y=-2x+z,z相当于直线y=-2x+z的纵截距,由几何意义可得.
解答: 解:由题意作出其平面区域,

将z=2x+y化为y=-2x+z,z相当于直线y=-2x+z的纵截距,
x+y=4
x+by+c=0
解得,
x=4-
4+c
1-b
,y=
4+c
1-b

x=1
x+by+c=0
解得,
x=1,y=
-1-c
b

则由题意可得,
2+
-1-c
b
=1,2(4-
4+c
1-b
)+
4+c
1-b
=7,
解得,b=-1,c=-2.
故选A.
点评:本题考查了简单线性规划,作图要细致认真,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网