题目内容
设正数a,b满足
(x2+ax-b)=4,则
=( )
| lim |
| x→2 |
| lim |
| n→+∞ |
| an+1+abn |
| an-1+2bn+1 |
| A、0 | ||
B、
| ||
C、
| ||
| D、1 |
分析:由题意可得b=2a,代入要求的式子可得
=
=
,使用数列极限的运算法则计算得到结果.
| lim |
| n→+∞ |
| an+1+abn |
| an-1+2bn+1 |
| lim |
| n→+∞ |
| an+1+2nan+1 |
| an-1+2n+2an+1 |
| lim |
| n→+∞ |
| ||
|
解答:解:由题意可得 b=2a,∴
=
=
=
=
=
,
故选B.
| lim |
| n→+∞ |
| an+1+abn |
| an-1+2bn+1 |
| lim |
| n→+∞ |
| an+1+2nan+1 |
| an-1+2n+2an+1 |
=
| lim |
| n→+∞ |
| 1 +2n | ||
|
| lim |
| n→+∞ |
| ||
|
| 0+1 |
| 0+4 |
| 1 |
| 4 |
故选B.
点评:本题考查数列极限的运算法则的应用,由条件得到 b=2a,是解题的关键.
练习册系列答案
相关题目
设正数a,b满足
(x2+ax-b)=4,则
=( )
| lim |
| x→2 |
| lim |
| n→∞ |
| an+1+abn-1 |
| an-1+2bn |
| A、0 | ||
B、
| ||
C、
| ||
| D、1 |