题目内容
设正数a,b满足
(x2+ax-b)=4,则
=( )
| lim |
| x→2 |
| lim |
| n→∞ |
| an+1+abn-1 |
| an-1+2bn |
| A.0 | B.
| C.
| D.1 |
∵
(x2+ax-b)=4?4+2a-b=4?2a=b,
∴
=
.
∴
=
=
=
.
故选B.
| lim |
| x→2 |
∴
| a |
| b |
| 1 |
| 2 |
∴
| lim |
| n→∞ |
| an+1+abn-1 |
| an-1+2bn |
| lim |
| n→∞ |
a(
| ||||
|
| lim |
| n→∞ |
a(
| ||||
|
| 1 |
| 4 |
故选B.
练习册系列答案
相关题目
设正数a,b满足
(x2+ax-b)=4,则
=( )
| lim |
| x→2 |
| lim |
| n→∞ |
| an+1+abn-1 |
| an-1+2bn |
| A、0 | ||
B、
| ||
C、
| ||
| D、1 |
设正数a,b满足
(x2+ax-b)=4,则
=( )
| lim |
| x→2 |
| lim |
| n→+∞ |
| an+1+abn |
| an-1+2bn+1 |
| A、0 | ||
B、
| ||
C、
| ||
| D、1 |