题目内容

13.在三棱锥P-ABC中,PA⊥底面ABC,AD⊥平面PBC,其垂足D落在直线PB上.
(Ⅰ)求证:BC⊥PB;
(Ⅱ)若AD=$\sqrt{3}$,AB=BC=2,Q为AC的中点,求PA的长度以及二面角Q-PB-C的余弦值.

分析 (I)由PA⊥平面ABC得PA⊥BC,由AD⊥平面PBC得AD⊥BC,故而BC⊥平面PAB,于是BC⊥PB;
(II)根据△PAB的面积即可得出PA的长,建立坐标系,求出平面PBQ的法向量$\overrightarrow{n}$和$\overrightarrow{AD}$的坐标,即可得出二面角的大小.

解答 (Ⅰ)证明:∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,
∵AD⊥平面PBC,BC?平面PBC,
∴AD⊥BC
又PA?平面PAB,AD?平面PAB,PA∩AB=A,
∴BC⊥平面PAB
∵PB?平面PAB,
∴BC⊥PB.                    
(Ⅱ)解:∵AD⊥平面PBC,其垂足D落在直线PB上,∴AD⊥PB,
设PA=x,则PB=$\sqrt{{x}^{2}+4}$,
∴S△PAB=$\frac{1}{2}PB•AD$=$\frac{1}{2}AB•PA$,
即$\sqrt{{x}^{2}+4}•\sqrt{3}$=2x,解得x=2$\sqrt{3}$,即PA=2$\sqrt{3}$.
由(1)知BC⊥平面PAB,又AB?平面PAB,
∴BC⊥AB,
以$\overrightarrow{AB}$,$\overrightarrow{AP}$为x轴、z轴建立空间直角坐标系,则B(2,0,0),Q(1,1,0),
P(0,0,2$\sqrt{3}$),C(2,2,0),
∴$\overrightarrow{PB}$=(2,0,-2$\sqrt{3}$),$\overrightarrow{PQ}$=(1,1,-2$\sqrt{3}$),
设平面PBQ的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=0}\\{\overrightarrow{n}•\overrightarrow{PQ}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{2x-2\sqrt{3}z=0}\\{x+y-2\sqrt{3}z=0}\end{array}\right.$,
令z=1得$\overrightarrow{n}$=($\sqrt{3}$,$\sqrt{3}$,1),
在Rt△ABD中,AD=$\sqrt{3}$,AB=2,则BD=1,∴D($\frac{3}{2}$,0,$\frac{\sqrt{3}}{2}$),
∴$\overrightarrow{AD}$=($\frac{3}{2}$,0,$\frac{\sqrt{3}}{2}$),
∵AD⊥平面PBC,∴$\overrightarrow{AD}$是平面PBC的一个法向量.
∴cos<$\overrightarrow{n},\overrightarrow{AD}$>=$\frac{\overrightarrow{n}•\overrightarrow{AD}}{|\overrightarrow{n}||\overrightarrow{AD}|}$=$\frac{2\sqrt{3}}{\sqrt{7}•\sqrt{3}}$=$\frac{2\sqrt{7}}{7}$.
∴二面角Q-PB-C的余弦值为$\frac{2\sqrt{7}}{7}$.

点评 本题考查了线面垂直的判定与性质,空间向量与空间角的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网