题目内容
4.已知α,β为平面,a,b,c为直线,下列命题正确的是( )| A. | a?α,若b∥a,则b∥α | B. | α⊥β,α∩β=c,b⊥c,则b⊥β | ||
| C. | a⊥b,b⊥c,则a∥c | D. | a∩b=A,a?α,b?α,a∥β,b∥β,则α∥β |
分析 在A中,a?α,b与α平行或异面;在B中,b与β相交、平行或b?β;在C中,a与c相交、平行或异面;在D中,由面面平行的判定定理得α∥β.
解答 解:由α,β为平面,a,b,c为直线,知:
在A中,a?α,若b∥a,则b与α平行或异面,故A错误;
在B中,α⊥β,α∩β=c,b⊥c,则b与β相交、平行或b?β,故B错误;
在C中,a⊥b,b⊥c,则a与c相交、平行或异面,故C错误;
在D中,a∩b=A,a?α,b?α,a∥β,b∥β,
则由面面平行的判定定理得α∥β,故D正确.
故选:D.
点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.
练习册系列答案
相关题目
12.若sin(π-α)=$\frac{1}{3}$,且$\frac{π}{2}$≤α≤π,则cosα=( )
| A. | $\frac{2\sqrt{2}}{3}$ | B. | -$\frac{2\sqrt{2}}{3}$ | C. | -$\frac{4\sqrt{2}}{9}$ | D. | $\frac{4\sqrt{2}}{9}$ |
19.已知动直线l0:ax+by+c-2=0(a>0,c>0)恒过点P(1,m)且Q(4,0)到动直线l0的最大距离为3,则$\frac{1}{2a}$+$\frac{2}{c}$的最小值为( )
| A. | $\frac{9}{2}$ | B. | $\frac{9}{4}$ | C. | 1 | D. | 9 |
9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,若在双曲线上存在点P使△OPF2是以O为顶点的等腰三角形,又|PF1|+|PF2|=2$\sqrt{2{c}^{2}-{b}^{2}}$,其中c为双曲线的半焦距,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{2}$+1 | C. | $\sqrt{3}$ | D. | $\sqrt{3}$-1 |
16.若sin(π-α)=$\frac{1}{3}$,且$\frac{π}{2}$≤α≤π,则sin2α的值为( )
| A. | -$\frac{4\sqrt{2}}{9}$ | B. | -$\frac{2\sqrt{2}}{9}$ | C. | $\frac{2\sqrt{2}}{9}$ | D. | $\frac{4\sqrt{2}}{9}$ |
13.已知$a=\frac{1}{π}\int_{-1}^1{(\sqrt{1-{x^2}}+sinx)dx}$,则二项式${(2x-\frac{a}{x^2})^9}$的展开式中的常数项为-672.
14.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,如表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y之间的关系:
(Ⅰ)求小李这5天的平均投篮命中率
(Ⅱ)用线性回归分析方法,预测小李该月6号打3.5小时篮球的投篮命中率(保留2位小数点)
参考公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-{y}_{i})^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}{b}$x.
| 时间x | 1 | 1.5 | 2 | 2.5 | 3 |
| 命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(Ⅱ)用线性回归分析方法,预测小李该月6号打3.5小时篮球的投篮命中率(保留2位小数点)
参考公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-{y}_{i})^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}{b}$x.