题目内容

20.如图,四棱锥P-ABCD的底面ABCD为矩形,AB=2$\sqrt{2}$,BC=2,点P在底面上的射影在AC上,E,F分别是AB,BC的中点.
(Ⅰ)证明:DE⊥平面PAC;
(Ⅱ)在PC边上是否存在点M,使得FM∥平面PDE?若存在,求出$\frac{PM}{MC}$的值;不存在,请说明理由.

分析 (Ⅰ)由题意和向量法可证AC⊥DE,再由题意和线面垂直的性质可得DE⊥平面PAC;
(Ⅱ)当点M在PC边上且满足$\frac{PM}{MC}$=3时,FM∥平面PDE,作MN∥PD交CD与N,连接NF,可证平面MNF∥平面PDE,由面面平行的性质可得.

解答 (Ⅰ)证明:由题意可得|$\overrightarrow{AB}$|=2$\sqrt{2}$,|$\overrightarrow{AD}$|=2,且$\overrightarrow{AB}$⊥$\overrightarrow{AD}$,
∴$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,$\overrightarrow{DE}$=$\overrightarrow{AE}$-$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AD}$,
∴$\overrightarrow{AC}$•$\overrightarrow{DE}$=($\overrightarrow{AB}$+$\overrightarrow{AD}$)•($\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AD}$)=$\frac{1}{2}$${\overrightarrow{AB}}^{2}$-$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-${\overrightarrow{AD}}^{2}$
=$\frac{1}{2}$${\overrightarrow{AB}}^{2}$-$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-${\overrightarrow{AD}}^{2}$=$\frac{1}{2}$×8-0-4=0,
∴$\overrightarrow{AC}$⊥$\overrightarrow{DE}$,即AC⊥DE,又点P在底面上的射影在AC上,
∴平面PAC⊥平面ABCD,又AC为平面PAC与平面ABCD的交线,
DE?平面ABCD,∴DE⊥平面PAC;
(Ⅱ)当点M在PC边上且满足$\frac{PM}{MC}$=3时,FM∥平面PDE,下面证明:
作MN∥PD交CD与N,连接NF,在底面矩形中可证NF∥DE,
由MN∥PD可得MN∥平面PDE,由NF∥DE可得NF∥平面PDE,
再由MN和NF相交可得平面MNF∥平面PDE,
又MF?平面MNF,∴FM∥平面PDE.

点评 本题考查直线和平面平行和垂直的判定,作辅助线是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网