题目内容

18.设n∈N*,则$\sqrt{\underbrace{11…1}_{2n个}-\underbrace{22…2}_{n个}}$=(  )
A.$\underbrace{33…3}_{n个}$B.$\underbrace{33…3}_{2n-1个}$C.$\underbrace{33…3}_{{2^n}-1个}$D.$\underbrace{33…3}_{2n个}$

分析 利用数列知识,即可求解.

解答 解:$\sqrt{\underbrace{11…1}_{2n个}-\underbrace{22…2}_{n个}}=\sqrt{\frac{{{{10}^{2n}}-1}}{9}-\frac{{2({{10}^n}-1)}}{9}}=\sqrt{\frac{{{{({{10}^n}-1)}^2}}}{9}}=\frac{{{{10}^n}-1}}{3}$=$\underbrace{33…3}_{n个}$.
故选A.

点评 本题主要考查推理证明的相关知识,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网