题目内容
在△ABC中,AB=2,AC=3,∠A=60°,P是三角形的内心,求
•
.
| AP |
| BC |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:设AP延长线交BC于D,连接BP,内心的性质求得
和
关系,求得
和
,
的关系式,求得|BD|,进而求得
,表示出
,最后利用向量的数量积求得
•
| BD |
| BC |
| AD |
| AB |
| AC |
| |AP| |
| |AD| |
| AP |
| AP |
| BC |
解答:
解:设AP延长线交BC于D,连接BP,则
=
,
∴
=
=
(
-
)
=
+
=
+
=
+
(
-
)=
+
,
∴|
|2=
[
-
]2=
(
2-2
•
+
2)=
(9-2×3×2×cos60°+4)=
,
∴|BD|=
,
=
=
=
,
∴
=
,
∴
=
,
=
•(
+
)=
•(3
+2
),
∴
•
=
•(3
+2
)•(
-
)=
•(3
•
-3
2+2
2-2
•
=
•(6+2•3•cos60°)=
.
| |AB| |
| |AC| |
| |BD| |
| |CD| |
| 2 |
| 3 |
∴
| BD |
| 2 |
| 5 |
| BC |
| 2 |
| 5 |
| AC |
| AB |
| AD |
| AB |
| BD |
| AB |
| 2 |
| 5 |
| BC |
| AB |
| 2 |
| 5 |
| AC |
| AB |
| 3 |
| 5 |
| AB |
| 2 |
| 5 |
| AC |
∴|
| BD |
| 4 |
| 25 |
| AC |
| AB |
| 4 |
| 25 |
| AC |
| AC |
| AB |
| AB |
| 4 |
| 25 |
| 28 |
| 25 |
∴|BD|=
2
| ||
| 5 |
| |AP| |
| |PD| |
| |AP| |
| |AD|-|AP| |
| |AB| |
| |BD| |
| 5 | ||
|
∴
| |AP| |
| |AD| |
| 5 | ||
5+
|
∴
| AP |
| 5 | ||
5+
|
| AD |
| 5 | ||
5+
|
| 3 |
| 5 |
| AB |
| 2 |
| 5 |
| AC |
| 1 | ||
5+
|
| AB |
| AC |
∴
| AP |
| BC |
| 1 | ||
5+
|
| AB |
| AC |
| AC |
| AB |
| 1 | ||
5+
|
| AB |
| AC |
| AB |
| AC |
| AB |
| AC |
| 1 | ||
5+
|
5-
| ||
| 2 |
点评:本题主要考查了平面向量的数量积的运算.考查了学生推理和分析能力.
练习册系列答案
相关题目