题目内容

1.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}\right.$,则目标函数z=4x+2y的最大值为(  )
A.12B.10C.8D.2

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=4x+2y得y=-2x+$\frac{1}{2}$z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+$\frac{1}{2}$z经过点C时,直线y=-2x+$\frac{1}{2}$的截距最大,
此时z最大.
由$\left\{\begin{array}{l}x+y=3\\ y=1\end{array}\right.$,解得$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$,即C(2,1),
代入目标函数z=4x+2y得z=4×2+2×1=10.
即目标函数z=4x+2y的最大值为10.
故选:B

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网