题目内容

9.已知抛物线y2=4x的准线与x轴交于点P,过点P且斜率为k(k>0)的直线l与抛物线交于A,B两点,F为抛物线的焦点,若|FB|=2|FA|,则k的值为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{2}{3}$D.$\frac{{2\sqrt{2}}}{3}$

分析 设出A,B的坐标,再设出AB的方程,联立直线方程和抛物线方程,由焦半径结合|FA|=3|FB|,求得A的坐标,代入两点求斜率公式得答案.

解答 解:设A(x1,y1),B(x2,y2),
由已知2|FA|=|FB|,得:x2+1=2(x1+1),即x2=2x1+1,①
∵P(-1,0),则AB的方程:y=kx+k,
与y2=4x联立,得:k2x2+(2k2-4)x+k2=0,则x1x2=1,②
由①②得x1=$\frac{1}{2}$,则A(2,2$\sqrt{2}$),
∴k=$\frac{2\sqrt{2}-0}{2+1}$=$\frac{2\sqrt{2}}{3}$,
故选:D.

点评 本题主要考查了抛物线的简单性质.考查了直线与抛物线的关系及焦点弦的问题.常需要利用抛物线的定义来解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网