题目内容

已知命题p:函数y=ax(a>0且a≠1)在R上是增函数,命题q:loga2+log2a≥2(a>0且a≠1),则下列命题中为真命题的是(  )
A、p∨qB、p∧q
C、(¬p)∧qD、p∨(¬q)
考点:复合命题的真假
专题:简易逻辑
分析:利用指数函数与对数函数的单调性即可判定命题p,q的真假,再利用复合命题真假的判定方法即可得出.
解答: 解:命题p:函数y=ax(a>0且a≠1)在R上是增函数,只有当a>1时是真命题,因此p是假命题.
命题q:loga2+log2a≥2(a>0且a≠1),只有当a>1时,命题q才是真命题,因此q是假命题.
∴只有p∨(¬q)是真命题.
故选:D.
点评:本题考查了指数函数与对数函数的单调性、复合命题真假的判定方法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网