题目内容

3.如图,当甲船位于A处时获悉,在其正东方向相距10海里的B处有个艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距6海里的C处的乙船,乙船立即朝北偏东(θ+30°)的方向沿直线前往B处营救,则sinθ的值为$\frac{5\sqrt{3}}{14}$.

分析 连结BC,先用余弦定理计算BC,再利用正弦定理计算sinC即可.

解答 解:连结BC,由已知得AC=6,AB=10,∠BAC=120°,
由余弦定理得BC2=AB2+AC2-2•AB•AC•cos120°=100+36-2•10•6•(-$\frac{1}{2}$)=196,
∴BC=14,
由正弦定理得$\frac{AB}{sinC}=\frac{BC}{sin∠BAC}$,即$\frac{10}{sinC}=\frac{14}{\frac{\sqrt{3}}{2}}$,解得sinC=$\frac{5\sqrt{3}}{14}$,
∴sinθ=$\frac{5\sqrt{3}}{14}$.
故答案为:$\frac{5\sqrt{3}}{14}$.

点评 本题考查了解三角形的实际应用,正余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网