题目内容
已知f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于( )A.-26
B.-18
C.-10
D.10
【答案】分析:函数f(x)不具备奇偶性,但其中g(x)=x5+ax3+bx是奇函数,则可充分利用奇函数的定义解决问题.
解答:解:令g(x)=x5+ax3+bx,由函数奇偶性的定义,易得其为奇函数;
则f(x)=g(x)-8
所以f(-2)=g(-2)-8=10
得g(-2)=18
又因为g(x)是奇函数,即g(2)=-g(-2)
所以g(2)=-18
则f(2)=g(2)-8=-18-8=-26
故选A.
点评:本题较灵活地考查奇函数的定义.
解答:解:令g(x)=x5+ax3+bx,由函数奇偶性的定义,易得其为奇函数;
则f(x)=g(x)-8
所以f(-2)=g(-2)-8=10
得g(-2)=18
又因为g(x)是奇函数,即g(2)=-g(-2)
所以g(2)=-18
则f(2)=g(2)-8=-18-8=-26
故选A.
点评:本题较灵活地考查奇函数的定义.
练习册系列答案
相关题目
已知f(x)=x5-a,且f(-1)=0,则f-1(1)的值是( )
| A、0 | |||
| B、1 | |||
| C、-1 | |||
D、
|