题目内容
10张奖卷中,有2张中奖卷;从中任摸两张,则中奖的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:古典概型及其概率计算公式
专题:概率与统计
分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
解答:
解:在10张奖券中,有2张有奖,
某人从中任意抽取两张,共有
=45种情况,
其中恰有一张中奖有
=16种情况,
两张均中奖有
=1种情况,
则他中奖的概率是
.
故选:D
某人从中任意抽取两张,共有
| C | 2 10 |
其中恰有一张中奖有
| C | 1 2 |
| C | 1 8 |
两张均中奖有
| C | 2 2 |
则他中奖的概率是
| 17 |
| 45 |
故选:D
点评:本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.
练习册系列答案
相关题目
若集合M={x|x-2<0},N={x|x2-4x+3<0},则M∩N=( )
| A、{x|-2<x<2} |
| B、{x|x<2} |
| C、{x|1<x<2} |
| D、{x|1<x<3} |
根据下面的语句,可知输出的结果s是( )
i=1
whilc i<9
i=i+2
s=2*i+3
encl
prinl(%io(2)z):
i=1
whilc i<9
i=i+2
s=2*i+3
encl
prinl(%io(2)z):
| A、17 | B、19 | C、21 | D、23 |
f(x)为定义在实数上的可导函数,且f(x)<f′(x)对任意的x∈R都成立,则( )
| A、f(1)>ef(0),f(2013)>e2013f(0) |
| B、f(1)<ef(0),f(2013)>e2013f(0) |
| C、f(1)>ef(0),f(2013)<e2013f(0) |
| D、f(1)<ef(0),f(2013)<e2013f(0) |
设动点坐标(x,y)满足(x-y+1)(x+y-4)≥0,x≥3则x2+y2的最小值为( )
A、
| ||
B、
| ||
| C、10 | ||
D、
|
抽屉中有10只外观一样的手表,其中有3只是坏的,现从抽屈中随机地抽取4只,那么
等于( )
| 1 |
| 6 |
| A、恰有1只是坏的概率 |
| B、恰有2只是坏的概率 |
| C、恰有4只是好的概率 |
| D、至多2只是坏的概率 |
已知,A(-3,1)、B(2,-4),则直线AB上方向向量
的坐标是( )
| AB |
| A、(-5,5) |
| B、(-1,-3) |
| C、(5,-5) |
| D、(-3,-1) |