题目内容
已知数列{an}是首项为a1=
,公比q=
的等比数列,设bn+2=3log
an(∈N*),数列{cn}满足cn=an•bn.
(1)求证:{bn}是等差数列;
(2)求数列{bn}的前n项和Sn;
(3)(理科)求数列{cn}的前n项和Tn.
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
(1)求证:{bn}是等差数列;
(2)求数列{bn}的前n项和Sn;
(3)(理科)求数列{cn}的前n项和Tn.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知得an=
,从而bn=3n-2,由此能证明{bn}是首项为1,公差为3的等差数列.
(2)由{bn}是首项为1,公差为3的等差数列,能求出数列{bn}的前n项和Sn.
(3)由cn=an•bn=(3n-2)•
,利用错位相减法能求出数列{cn}的前n项和Tn.
| 1 |
| 4n |
(2)由{bn}是首项为1,公差为3的等差数列,能求出数列{bn}的前n项和Sn.
(3)由cn=an•bn=(3n-2)•
| 1 |
| 4n |
解答:
(1)证明:∵数列{an}是首项为a1=
,公比q=
的等比数列,
∴an=
,
∴bn+2=3log
an=3log
=3n,
∴bn=3n-2,
∴bn-bn-1=(3n-2)-[3(n-1)-2]=3,b1=3-2=1,
∴{bn}是首项为1,公差为3的等差数列.
(2)解:由(1)得Sn=n+
×3=
n2-
n.
(3)解:∵cn=an•bn=(3n-2)•
,
∴Tn=
+
+
+…+
,①
∴
Tn=
+
+
+…+
,②
①-②,得
Tn=
+
+
+…+
-
=
+
-
=
-
,
∴Tn=
-
.
| 1 |
| 4 |
| 1 |
| 4 |
∴an=
| 1 |
| 4n |
∴bn+2=3log
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4n |
∴bn=3n-2,
∴bn-bn-1=(3n-2)-[3(n-1)-2]=3,b1=3-2=1,
∴{bn}是首项为1,公差为3的等差数列.
(2)解:由(1)得Sn=n+
| n(n-1) |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
(3)解:∵cn=an•bn=(3n-2)•
| 1 |
| 4n |
∴Tn=
| 1 |
| 4 |
| 4 |
| 42 |
| 7 |
| 43 |
| 3n-2 |
| 4n |
∴
| 1 |
| 4 |
| 1 |
| 42 |
| 4 |
| 43 |
| 7 |
| 44 |
| 3n-2 |
| 4n+1 |
①-②,得
| 3 |
| 4 |
| 1 |
| 4 |
| 3 |
| 42 |
| 3 |
| 43 |
| 3 |
| 4n |
| 3n-2 |
| 4n+1 |
=
| 1 |
| 4 |
| ||||
1-
|
| 3n-2 |
| 4n+1 |
=
| 1 |
| 2 |
| 3n+2 |
| 4n+1 |
∴Tn=
| 2 |
| 3 |
| 3n+2 |
| 3×4n |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目