题目内容

3.正项等比数列{an}中的a1,a4031是函数f(x)=$\frac{1}{3}$x3-4x2+6x-3的极值点,则${log}_{\sqrt{6}}{a}_{2016}$=(  )
A.1B.2C.$\sqrt{2}$D.-1

分析 f′(x)=x2-8x+6=0,由于a1,a4031是函数f(x)=$\frac{1}{3}$x3-4x2+6x-3的极值点,可得a1•a4031=6,a2016=$\sqrt{{a}_{1}{a}_{4031}}$.即可得出.

解答 解:f(x)=$\frac{1}{3}$x3-4x2+6x-3,
∴f′(x)=x2-8x+6=0,
∵a1,a4031是函数f(x)=$\frac{1}{3}$x3-4x2+6x-3的极值点,
∴a1•a4031=6,又an>0,
∴a2016=$\sqrt{{a}_{1}{a}_{4031}}$=$\sqrt{6}$.
∴${log}_{\sqrt{6}}{a}_{2016}$=1.
故选:A.

点评 本题考查了利用导数研究函数的极值、一元二次方程的根与系数、等比数列的性质、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网