题目内容
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ).
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
B
解析 设g(x)=f(x)-2x-4,由已知g′(x)=f′(x)-2>0,
则g(x)在(-∞,+∞)上递增,又g(-1)=f(-1)-2=0,
由g(x)=f(x)-2x-4>0,知x>-1.
练习册系列答案
相关题目
题目内容
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ).
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
B
解析 设g(x)=f(x)-2x-4,由已知g′(x)=f′(x)-2>0,
则g(x)在(-∞,+∞)上递增,又g(-1)=f(-1)-2=0,
由g(x)=f(x)-2x-4>0,知x>-1.