题目内容

9.已知数列{an}为等差数列,且满足$\overrightarrow{BA}$=a3$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,若$\overrightarrow{AB}$=λ$\overrightarrow{AC}$(λ∈R),点O为直线BC外一点,则a1+a2017=(  )
A.0B.1C.2D.4

分析 推导出$\overrightarrow{OA}$=(a3+1)$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,从而由题设条件得到a3+1+a2015=1,由此能求出a1+a2017的值.

解答 解:∵数列{an}为等差数列,且满足$\overrightarrow{BA}$=a3$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,
∴$\overrightarrow{OA}$-$\overrightarrow{OB}$=${a}_{3}\overrightarrow{OB}+{a}_{2015}\overrightarrow{OC}$,
即$\overrightarrow{OA}$=(a3+1)$\overrightarrow{OB}$+a2015$\overrightarrow{OC}$,
又∵$\overrightarrow{AB}$=λ$\overrightarrow{AC}$,λ∈R,
∴a3+1+a2015=1,
∴a1+a2017=a3+a2015=0.
故选:A.

点评 本题考查等差数列的两项和的求法,考查向量知识,考查推理论证能力、运算求解能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网