题目内容
已知函数,,,,若关于的不等式的整数解有且仅有一个值为-2.
(1)求整数的值;
(2)若函数的图象恒在函数的上方,求实数的取值范围.
已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.
(1)求数列、的通项公式;
(2)如果,设数列的前项和为,求证:.
执行如图所示的程序框图,如果输入的均为2,则输出的等于( )
A. B. C. D.
已知定义在上的可导函数的导函数,满足,且为偶函数,,则不等式的解集为( )
已知是函数的两个零点,若,则( )
A. B.
C. D.
以下茎叶图记录了甲,乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以表示.
(1)如果,求乙组同学植树棵数的平均数和方差;
(2)如果,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差,其中为,,……,的平均数)
已知函数(注:是自然对数的底数),方程有四个实数根,则的取值范围为( )
2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成,,,,五组,并作出如下频率分布直方图:
(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为户,求的分布列和数学期望;
(3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求,,,,,,的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
附:临界值表参考公式:.
已知曲线:.
(1)若曲线是一个圆,且点在圆外,求实数的取值范围;
(2)当时,曲线关于直线对称的曲线为.设为平面上的点,满足:存在过点的无穷多对互相垂直的直线,它们分别与曲线和曲线相交,且直线被曲线截得的弦长与直线被曲线截得的弦长总相等.
(i)求所有满足条件的点的坐标;
(ii)若直线被曲线截得的弦为,直线被曲线截得的弦为,设与的面积分别为与,试探究是否为定值?若是,求出该定值;若不是,请说明理由.