题目内容
已知实数x>0,则下列不等式中不能恒成立的一个是( )
| A、lnx+1<x<ex-1 | ||
| B、sinx-x<0 | ||
C、ex>
| ||
| D、2x-x2≥0 |
考点:不等式比较大小
专题:不等式的解法及应用
分析:对于D:由2x=x2,x>0,解得x=2或4.当0<x<2时,2x>x2;当2<x<4时,x2>2x;…,即可得出.
解答:
解:对于D:由2x=x2,x>0,解得x=2或4.
∴当0<x<2时,2x>x2;
当2<x<4时,x2>2x;
当4<x时,2x>x2;
当x=2或4时,2x=x2.
因此D不能恒成立.
故选:D.
∴当0<x<2时,2x>x2;
当2<x<4时,x2>2x;
当4<x时,2x>x2;
当x=2或4时,2x=x2.
因此D不能恒成立.
故选:D.
点评:本题考查了指数函数与对数函数的单调性,属于基础题.
练习册系列答案
相关题目
已知数列{an}满足an+an+1=
(n∈N*),其中a1=-
,试通过计算a2,a3,a4,a5,猜想an等于( )
| (-1)n+1 |
| 2 |
| 1 |
| 2 |
A、an=
| |||||||||
B、an=-
| |||||||||
C、an=
| |||||||||
D、
|
已知动点P(t,t),Q(10-t,0),其中0<t<10,则点M(6,1),N(4,5)与直线PQ的关系是( )
| A、M,N均在直线PQ上 |
| B、M,N均不在直线PQ上 |
| C、M不在直线PQ上,N可能在直线PQ上 |
| D、M可能在直线PQ上,N不在直线PQ上 |
已知{an}为等差数列,{bn}为正项等比数列,公比q≠1,若a1=b1,a15=b15,则( )
| A、a8≥b8 |
| B、a8>b8 |
| C、a8≤b8 |
| D、a8<b8 |
已知实数x,y满足
,则目标函数z=x+2y的最大值为( )
|
| A、1 | ||
B、
| ||
| C、4 | ||
| D、5 |
对于实数x,“x>6”是“x>10”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知向量
=(-1,x),
=(1,x),若2
-
与
垂直,则|a|=( )
| a |
| b |
| b |
| a |
| a |
| A、1 | ||
B、
| ||
| C、2 | ||
| D、4 |
定义一种新运算:a?b=
,已知函数f(x)=(1+
)?3log2(x+1),若方程f(x)-k=0恰有两个不相等的实根,则实数k的取值范围为( )
|
| 2 |
| x |
| A、(-∞,3) |
| B、(1,3) |
| C、(-∞,-3)∪(1,3) |
| D、(-∞,-3)∪(0,3) |