题目内容

16.在△ABC中,角A,B,C所对的边分别是a、b、c,已知b=2,且cos2B+cosB+cos(A-C)=1,当a+2c取得最小值时,最大边所对角的余弦值是-$\frac{\sqrt{2}}{4}$.

分析 使用二倍角公式和两角和的余弦函数公式化简,借助于正弦定理得出a,b,c成等比数列,利用基本不等式得出a+2c取得最小值时的条件,代入余弦定理即可求出.

解答 解:在△ABC中,∵cos2B+cosB+cos(A-C)=1,
∴cosB+cos(A-C)=1-cos2B,
∵cosB=-cos(A+C),cos2B=1-2sin2B,
∴cos(A-C)-cos(A+C)=2sin2B,
∴-2sinAsin(-C)=2sin2B,即sinAsinC=sin2B,
∴ac=b2=4.即c=$\frac{4}{a}$.
∴a+2c=a+$\frac{8}{a}$≥2$\sqrt{8}$=4$\sqrt{2}$,当且仅当a=$\frac{8}{a}$即a=2$\sqrt{2}$时取等号.
∴当a+2c取得最小值时,a=2$\sqrt{2}$,c=$\sqrt{2}$.
∴最大边对的角为A,
由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4+2-8}{4\sqrt{2}}$=-$\frac{\sqrt{2}}{4}$.
故答案为:-$\frac{\sqrt{2}}{4}$.

点评 本题考查了三角函数的恒等变换,正弦定理,余弦定理,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网