题目内容

12.求下列函数的定义域:
(1)y=$\frac{\sqrt{x+1}}{x+2}$;
(2)y=$\frac{\sqrt{2x-1}}{x-1}$+(5x-4)0

分析 (1)由$\left\{\begin{array}{l}{x+1≥0}\\{x+2≠0}\end{array}\right.$,解得x范围即可得出.
(2)由$\left\{\begin{array}{l}{2x-1≥0}\\{x-1≠0}\\{5x-4≠0}\end{array}\right.$,解得x范围即可得出.

解答 解:(1)由$\left\{\begin{array}{l}{x+1≥0}\\{x+2≠0}\end{array}\right.$,解得x≥-1,∴此函数的定义域为{x|x≥-1}.
(2)由$\left\{\begin{array}{l}{2x-1≥0}\\{x-1≠0}\\{5x-4≠0}\end{array}\right.$,解得x≥$\frac{1}{2}$,x≠1,x$≠\frac{4}{5}$.
∴函数的定义域为{x|x≥$\frac{1}{2}$,x≠1,x$≠\frac{4}{5}$}.

点评 本题考查了函数的定义域、不等式的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网