题目内容
已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(1)=2,则f(2012)=( )
| A、2 | B、0 | C、-2 | D、±2 |
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数奇偶性之间的关系求出函数f(x)是周期函数,即可得到结论.
解答:
解:∵g(x)是R上的奇函数,且g(x)=f(x-1),
∴g(-x)=f(-x-1)=-f(x-1),
∵函数f(x)是R上的偶函数,
∴f(-x-1)=-f(x-1)=f(x+1),
则f(x+2)=-f(x),
即f(x+4)=-f(x+2)=f(x),
则f(x)是周期为4的周期函数,
则f(2012)=f(0)=f(1-1)=g(1)=2,
故选:A
∴g(-x)=f(-x-1)=-f(x-1),
∵函数f(x)是R上的偶函数,
∴f(-x-1)=-f(x-1)=f(x+1),
则f(x+2)=-f(x),
即f(x+4)=-f(x+2)=f(x),
则f(x)是周期为4的周期函数,
则f(2012)=f(0)=f(1-1)=g(1)=2,
故选:A
点评:本题主要考查函数值的计算,根据函数奇偶性的定义和性质进行转化,求出函数f(x)是周期函数是解决本题的关键.
练习册系列答案
相关题目
在直角坐标系xOy中,直线l的参数方程为
(t为参数).曲线C的参数方程为
(θ为参数),则直线l和曲线C的公共点有( )
|
|
| A、0个 | B、1个 | C、2个 | D、无数个 |
已知函数f(x)=x-1+
(x>-1).当x=a时,f(x)取得最小值,则a=( )
| 9 |
| x+1 |
| A、2 | B、1 | C、-3 | D、-4 |
若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是( )

| A、8 | B、6 | C、4 | D、2 |
若关于x的不等式x2-4x≥m对任意x∈[0,1]恒成立,则实数m的取值范围是( )
| A、m≤-3 |
| B、m≥-3 |
| C、-3≤m≤0 |
| D、m≤-3或m≥0 |
已知函数f(x)=
(x∈R)时,则下列结论不正确的是( )
| x |
| 1+|x| |
| A、任意x∈R,等式f(-x)+f(x)=0恒成立 |
| B、存在m∈(0,1),使得方程|f(x)|=m有两个不等实数根 |
| C、对任意x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2) |
| D、存在k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点 |