题目内容
13.已知$f(\sqrt{x})=x$,则函数f(x+2)为( )| A. | y=x2+4x+4(x≥-2) | B. | y=x2-4x+4(x≥0) | C. | y=x2+2(x≥0) | D. | y=x2-2(x≥0) |
分析 利用换元法求解f(x),在将x替换成x+2即可得到f(x+2).
解答 解:$f(\sqrt{x})=x$,
设t=$\sqrt{x}$,(t≥0),则x=t2.
那么$f(\sqrt{x})=x$转化为g(t)=t2.(t≥0)
故得f(x)=x2,(x≥0)
∴f(x+2)=(x+2)2=x2+4x+4,(x≥-2)
故选A.
点评 本题考查了函数解析式的求法,利用了换元法,属于基础题.
练习册系列答案
相关题目
5.求形如函数y=f(x)g(x)(f(x)>0)的导数的方法可以为:先两边同取自然对数lny=g(x)lnf(x),再两边同时求导得到$\frac{1}{y}•{y^'}={g^'}(x)lnf(x)+g(x)•\frac{1}{f(x)}•{f^'}(x)$,于是得到y′,试用此法求的函数$y={x^{x^2}}$(x>0)的一个单调递增区间是( )
| A. | (e,4) | B. | $(\frac{1}{{\sqrt{e}}},+∞)$ | C. | (0,e) | D. | $(0,\frac{1}{{\sqrt{e}}})$ |
3.对于函数y=f(x),部分y与x的对应关系如下表:
数列{xn}满足x1=2,且对任意x∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+…+x2015的值为( )
| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| y | 2 | 3 | 5 | 11 | 8 | 7 | 9 | 3 | 10 |
| A. | 10741 | B. | 10736 | C. | 10731 | D. | 10726 |