题目内容
19.设ω>0,函数y=2cos(ωx+$\frac{π}{5}$)-1的图象向右平移$\frac{5π}{4}$个单位后与原图象重合,则ω的最小值是( )| A. | $\frac{8}{5}$ | B. | $\frac{6}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{5}$ |
分析 利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,求得ω的最小值.
解答 解:∵ω>0,函数y=2cos(ωx+$\frac{π}{5}$)-1的图象向右平移$\frac{5π}{4}$个单位后,
可得y=2cos(ωx-$\frac{5ω}{4}$π+$\frac{π}{5}$)-1的图象,
再根据所得图象与原图象重合,
可得-$\frac{5ω}{4}$π=2kπ,k∈Z,即ω=-$\frac{8}{5}$k,
则ω的最小值为$\frac{8}{5}$,
故选:A.
点评 本题主要考查诱导公式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
9.
如图所示,单位位圆上的两个向量$\overrightarrow{a},\overrightarrow{b}$相互垂直,若向量$\overrightarrow{c}$满足($\overrightarrow{c}-\overrightarrow{a}$)•($\overrightarrow{c}-\overrightarrow{b}$)=0,则|$\overrightarrow{c}$|的取值范围是( )
| A. | [0,1] | B. | [0,$\sqrt{2}$] | C. | [1,$\sqrt{2}$] | D. | [1,2] |
14.在高中学习过程中,同学们经常这样说:“数学物理不分家,如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了苏俄生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的数学和物理成绩,如表:
(1)求数学成绩y对物理成绩x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$精确到0.1).若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出2位参加一项知识竞赛,求选中的学生的数学成绩至少有一位高于120分的概率.(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
(参考数据:902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)
| 成绩 编号 | 1 | 2 | 3 | 4 | 5 |
| 物理(x) | 90 | 85 | 74 | 68 | 63 |
| 数学(y) | 130 | 125 | 110 | 95 | 90 |
(2)要从抽取的这五位学生中随机选出2位参加一项知识竞赛,求选中的学生的数学成绩至少有一位高于120分的概率.(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
(参考数据:902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)
4.已知数列{an}满足:对于?m,n∈N*,都有an•am=an+m,且${a_1}=\frac{1}{2}$,那么a5=( )
| A. | $\frac{1}{32}$ | B. | $\frac{1}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |