题目内容

设α、β、γ为平面,m、n、l为直线,则下列哪个条件能推出m⊥β(  )
A、α⊥β,α∩β=l,m⊥l
B、n⊥α,n⊥β,m⊥α
C、α⊥γ,β⊥γ,m⊥α
D、α∩γ=m,α⊥γ,β⊥γ
考点:直线与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:根据面面垂直的判定定理可知选项A是否正确,根据垂直于同一直线的两平面平行,以及与两平行平面中一个垂直则垂直于另一个平面,可知选项B正确.根据平面α与平面β的位置关系进行判定可知选项C和D是否正确,
解答: 解:α⊥β,α∩β=l,m⊥l,根据面面垂直的判定定理可知,缺少条件m?α,故不正确;
n⊥α,n⊥β,⇒α∥β,而m⊥α,则m⊥β,故正确;
α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
故选B
点评:本小题主要考查空间线面关系、面面关系等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网