题目内容

15.体育课上,李老师对初三 (1)班50名学生进行跳绳测试,现测得他们的成绩(单位:个)全部介于20与70之间,将这些成绩数据进行分组(第一组:(20,30],第二组:(30,40],…,第五组:(60,70]),并绘制成如图所示的频率分布直方图.
(1)求成绩在第四组的人数和这50名同学跳绳成绩的中位数;
(2)从成绩在第一组和第五组的同学中随机取出 2名同学进行搭档,求至少有一名同学在第一组的概率.

分析 (1)根据频率分步直方图即可求出成绩在第四组的人数,估计中位数即可.
(2)根据频率分步直方图做出要用的各段的人数,设出各段上的元素,用列举法写出所有的事件和满足条件的事件,根据概率公式做出概率.

解答 解:(1)第四组的人数为[1-(0.004+0.008+0.016+0.04)×10]×50=16,
中位数为40+[0.5-(0.004+0.016)×10]÷0.04=47.5.
(2)据题意,第一组有0.004×10×50=2人,第五组有0.008×10×50=4人,
记第一组成绩为A,B,第五组成绩为a,b,c,d,
则可能构成的基本事件有(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(A,B),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共15种,
其中至少有一名是第一组的有(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(A,B),共9种,
∴概率$P=\frac{9}{15}=\frac{3}{5}$.

点评 本题是一个典型的古典概型问题,本题可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的精髓.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网