题目内容

定义在R上的函数y=f(x-1)的图象关于(1,0)对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(ln2)•f(ln2),c=(log 
1
2
4)•f(log 
1
2
4),则a,b,c的大小关系是(  )
A、a>b>c
B、a>c>b
C、c>b>a
D、c>a>b
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:由y=f(x-1)的图象关于点(1,0)对称,得到f(x)关于原点对称,即函数f(x)为奇函数,然后构造函数g(x)=xf(x),利用导数判断函数g(x)的单调性,然后比较大小即可.
解答: 解:∵函数y=f(x-1)的图象关于点(1,0)对称,
∴f(x)关于原点对称,即函数f(x)为奇函数.
设g(x)=xf(x),则g(x)为偶函数,
∴当x∈(-∞,0)时,g'(x)=f(x)+xf′(x)<0,此时函数单调递减,
当x∈(0,+∞)时,函数g(x)单调递增.
则a=g(30.3)=(30.3)•f(30.3),
b=g(ln2)=(ln2)•f(ln2),
c=g(log 
1
2
4)=(log 
1
2
4)•f(log 
1
2
4),
即c=g(log 
1
2
4)=g(-2)=g(2).
∵2>30.3>1,0<ln2<1,log3
1
9
=-2,
∴2>30.3>ln2,
∴g(2)>g(30.3)>g(ln2),
即c>a>b.
故选:D
点评:本题主要考查函数奇偶性和单调性的应用,以及利用导数研究函数的单调性问题,利用条件构造函数是解决本题的关键,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网