题目内容
设集合I={1,2,3,…,n}(n∈N+),选择I的两个非空子集A和B,使B中最小的数大于A中最大的数,记不同的选择方法种数为an,显然a1=0,a2=
=1
(1)求an;
(2)记数列{an}的前n项和为Sn,求Sn.
| C | 2 2 |
(1)求an;
(2)记数列{an}的前n项和为Sn,求Sn.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由题意得:a1=0,a2=
=1当n≥2时,an=
+2
+3
+…+(n-1)
,由此能求出an=n2n-1-2n+1(n∈N+)
(2)由an=n2n-1-2n+1(n∈N+),利用分组求和法和裂项求和法能求出数列{an}的前n项和Sn.
| C | 2 2 |
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |
(2)由an=n2n-1-2n+1(n∈N+),利用分组求和法和裂项求和法能求出数列{an}的前n项和Sn.
解答:
解:(1)由题意得:a1=0,a2=
=1
当n≥2时,an=
+2
+3
+…+(n-1)
=(2
+3
+4
+…+n
)-(
+
+
+…+
)
=n2n-1-(2n-1)=n2n-1-2n+1
又a1=0,a2=1也满足,
故an=n2n-1-2n+1(n∈N+)
(2)Sn=a1+a2+…+an
=(1×20+2×21+3×22+…+n×2n-1)-( 21+22+…+2n)+n
记Tn=1×20+2×21+3×22+…+n×2n-1
2 Tn=1×21+2×22+3×23+…+n×2n
两式相减得:Tn=(n-1)2n+1
故Sn=(n-1)2n+1-(2n+1-2)+n
=(n-3)2n+n+3.
| C | 2 2 |
当n≥2时,an=
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |
=(2
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |
| C | 2 n |
| C | 3 n |
| C | 4 n |
| C | n n |
=n2n-1-(2n-1)=n2n-1-2n+1
又a1=0,a2=1也满足,
故an=n2n-1-2n+1(n∈N+)
(2)Sn=a1+a2+…+an
=(1×20+2×21+3×22+…+n×2n-1)-( 21+22+…+2n)+n
记Tn=1×20+2×21+3×22+…+n×2n-1
2 Tn=1×21+2×22+3×23+…+n×2n
两式相减得:Tn=(n-1)2n+1
故Sn=(n-1)2n+1-(2n+1-2)+n
=(n-3)2n+n+3.
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意分组求和法和裂项求和法的合理运用.
练习册系列答案
相关题目