题目内容

6.如图,△ABC为圆的内接三角形,AB=AC,BD为圆的弦,且AC∥BD,过A作圆的切线与DB的延长线交于点F,AD与BC交于点E.
(I)求证:四边形ACBF为平行四边形;
(Ⅱ)若AF=2$\sqrt{7}$,BD=3求线段BE的长.

分析 (1I)由已知条件推导出∠ABC=∠BAF,从而得到AF∥BC,再由BD∥AC,能够证明四边形ACBF为平行四边形.
(Ⅱ)由已知条件利用切割线定理求出FB=4,由此能够求出线段BE的长.

解答 (I)证明:∵AF与圆相切于点A,∴∠BAF=∠ACB,
∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠BAF,
∴AF∥BC,
∵BD∥AC,∴四边形ACBF为平行四边形.
(Ⅱ)解:∵AF与圆相切于点A,
∴AF2=FB•(FB+BD),即62=FB•(FB+5),
解得FB=4,
根据(1)有AB=AC=FB=4,BC=AF=2$\sqrt{7}$,
设BE=x,由BD∥AC,得$\frac{AC}{BD}$=$\frac{CE}{AE}$,
∴$\frac{4}{3}=\frac{2\sqrt{7}-x}{x}$,解得x=$\frac{6\sqrt{7}}{7}$.

点评 本题考查平行四边形的证明,考查线段长的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网