题目内容

如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.

【答案】分析:要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.由△PAO≌△PCO,可证得∠PCO=90°.
解答:证明:连接OC,
∵PA⊥AB,
∴∠PA0=90°.(1分)
∵PO过AC的中点M,OA=OC,
∴PO平分∠AOC.
∴∠AOP=∠COP.(3分)
∴在△PAO与△PCO中有OA=OC,∠AOP=∠COP,PO=PO.
∴△PAO≌△PCO.(6分)
∴∠PCO=∠PA0=90°.
即PC是⊙O的切线.(7分)
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网