题目内容
18.已知函数f(x)=x3+lg($\sqrt{{x}^{2}+1}$+x),若f(x)的定义域中的a、b满足f(-a)+f(-b)-3=f(a)+f(b)+3,则f(a)+f(b)=-3.分析 由已知得f(x)是奇函数,由此利用奇函数的性质能求出f(a)+f(b).
解答 解:∵f(x)=x3+lg($\sqrt{{x}^{2}+1}$+x),
∴f(-x)=-x3-lg($\sqrt{{x}^{2}+1}$+x)=-f(x),
∵f(x)的定义域中的a、b满足f(-a)+f(-b)-3=f(a)+f(b)+3,
∴2[f(a)+f(b)]=-6,
∴f(a)+f(b)=-3.
故答案为:-3.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数的性质的合理运用.
练习册系列答案
相关题目
6.
函数f(x)=Asin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象如图所示,若$\overrightarrow{PQ}$•$\overrightarrow{QS}$=$\frac{{π}^{2}}{8}$-8,则函数f(x)的解析式为( )
| A. | f(x)=2sin(3x-$\frac{π}{4}$) | B. | f(x)=2sin(3x+$\frac{π}{4}$) | C. | f(x)=2sin(2x+$\frac{π}{3}$) | D. | f(x)=2sin(2x-$\frac{π}{3}$) |
13.设lg2=a,则lg50=( )
| A. | 2-a | B. | 1-a | C. | 1+a | D. | 2+a |
6.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见表.规定:A、B、C三级为合格等级,D为不合格等级.
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(I)求n和频率分布直方图中的x,y的值;
(Ⅱ)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(Ⅲ)在选取的样本中,从A、C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.
| 百分制 | 85以及以上 | 70分到84分 | 60分到69分 | 60分以下 |
| 等级 | A | B | C | D |
(I)求n和频率分布直方图中的x,y的值;
(Ⅱ)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(Ⅲ)在选取的样本中,从A、C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.