题目内容

已知命题p:α=β是tanα=tanβ的充要条件.命题q:∅⊆A.下列命题中为真命题的有
 

①p或q ②p且q ③¬p ④¬q.
考点:复合命题的真假
专题:简易逻辑
分析:根据正切函数的周期或图象即知命题p为假命题,而容易判断q为真命题,所以p或q,¬p为真命题.
解答: 解:tanα=tanβ不一定得到α=β,比如α=
π
6
β=π+
π
6
,满足tanα=tanβ,而α≠β;
∴命题p是假命题;
空集是任何集合的子集,所以命题q是真命题;
∴p或q,¬p为真命题.
故答案为:①③.
点评:考查正切函数的图象和周期,充要条件的概念,以及空集和任何集合的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网