题目内容
设f(x)=
|
分析:先根据分段函数求出f(1)的值,然后将0代入x≤0的解析式,最后根据定积分的定义建立等式关系,解之即可.
解答:解:∵f(x)=
∴f(1)=0,则f(f(1))=f(0)=1
即∫0a3t2dt=1=t3|0a=a3
解得:a=1
故答案为:1
|
∴f(1)=0,则f(f(1))=f(0)=1
即∫0a3t2dt=1=t3|0a=a3
解得:a=1
故答案为:1
点评:本题主要考查了分段函数的应用,以及定积分的求解,同时考查了计算能力,属于基础题.
练习册系列答案
相关题目
设f(x)=lg(
+a)是奇函数,则使f(x)>0的x的取值范围是( )
| 2 |
| 1-x |
| A、(-1,0) |
| B、(0,1) |
| C、(-∞,0) |
| D、(0,+∞) |