题目内容
1.(1)求图中a,b的值;
(2)试估计年销售额大于5000元小于6000元的概率?
分析 (1)由频率分布直方图的性质列出方程组,能求出图中a,b的值.
(2)当年产量大于250kg而低于300kg,或年产量大于350kg而低于400kg,或年产量大于550kg而低于600kg时,其年销售额为大于5000而低于6000元,由此能估计年销售额大于5000元小于6000元的概率.
解答 解:(1)由已知,得:
$\left\{\begin{array}{l}{100(a+0.015+b+0.0040)=1}\\{300×100a+400×0.4+500×100b+600×0.15=455}\end{array}\right.$,
即$\left\{\begin{array}{l}{100(a+b)=0.45}\\{300a+500b=2.05}\end{array}\right.$,
解得a=0.001,b=0.0035.(6分)
(2)由(1)结合直方图可知,
当年产量大于250kg而低于300kg,
或年产量大于350kg而低于400kg,
或年产量大于550kg而低于600kg时,
其年销售额为大于5000而低于6000元,
所以估计年销售额大于5000元小于6000元的概率为50×(0.001+0.004+0.0015)=0.325.(12分)
点评 本小题主要考查学生对概率知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.
练习册系列答案
相关题目
11.某调查机构为了研究“户外活动的时间长短”与“患感冒”两个分类变量是否相关,在该地随机抽取了若干名居民进行调查,得到数据如表所示:
若从被调查的居民中随机抽取1人,则取到活动时间超过1小时的居民的概率为$\frac{3}{5}$.
(1)完善上述2×2列联表;
(2)能否在犯错误的概率不超过0.1%的前提下,认为“户外活动的时间长短”与“患感冒”两者间相关.
| 患感冒 | 不患感冒 | 合计 | |
| 活动时间超过1小时 | 20 | 40 | 60 |
| 活动时间低于1小时 | 30 | 10 | 40 |
| 合计 | 50 | 50 | 100 |
(1)完善上述2×2列联表;
(2)能否在犯错误的概率不超过0.1%的前提下,认为“户外活动的时间长短”与“患感冒”两者间相关.
| P(K2≥k0) | 0.010 | 0.005 | 0.001 |
| k0 | 6.635 | 7.879 | 10.828 |
9.若不等式$\frac{4x+1}{x+2}$<0和不等式ax2+bx-2>0的解集相同,则a、b的值为( )
| A. | a=-8,b=-10 | B. | a=-4,b=-9 | C. | a=-1,b=9 | D. | a=-1,b=2 |
16.已知圆(x-1)2+(y-1)2=4上到直线y=x+b的距离等于1的点有且仅有2个,则b的取值范围是( )
| A. | (-$\sqrt{2}$,0)U(0,$\sqrt{2}$) | B. | (-3$\sqrt{2}$,3$\sqrt{2}$) | C. | (-3$\sqrt{2}$,-$\sqrt{2}$)U($\sqrt{2}$,3$\sqrt{2}$) | D. | (-3$\sqrt{2}$,-$\sqrt{2}$]U($\sqrt{2}$,3$\sqrt{2}$) |
13.若正数x,y满足4x+y-1=0,则$\frac{x+y}{xy}$的最小值为( )
| A. | 12 | B. | 10 | C. | 9 | D. | 8 |