题目内容
4.(1)AC与A′D′所成角的大小是45°.
(2)AC与A′D 所成角的大小是60°.
(3)A′E与BF所成角的大小是90°.
(本题只需在横线上填上正确的角度即可,无需写出解答过程)
分析 利用平移法,找出异面直线所成角,即可得出结论.
解答
解:(1)∵A′D′∥AD,∴∠DAC为所求,即AC与A′D′所成角的大小是45°;
(2)A′D∥B′C,∴∠B′CA为所求,即AC与A′D 所成角的大小是60°;
(3)取B′B的中点M,则CM∥A′E,CM⊥BF,∴A′E与BF所成角的大小是90°.
点评 本题考查异面直线所成角,考查学生的计算能力,关键是找出异面直线所成角.
练习册系列答案
相关题目
14.已知双曲线C与双曲线$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{48}$=1有相同的渐近线,且与椭圆$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{169}$=1有相同的焦点,则双曲线C的方程为( )
| A. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
9.下列命题中正确的个数是( )
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱
②有一个面是多边形,其余各面都是三角形的几何体叫棱锥
③若有两个侧面垂直于底面,则该四棱柱为直四棱柱
④圆台所有的轴截面是全等的等腰梯形.
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱
②有一个面是多边形,其余各面都是三角形的几何体叫棱锥
③若有两个侧面垂直于底面,则该四棱柱为直四棱柱
④圆台所有的轴截面是全等的等腰梯形.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
16.已知函数$y=3sin(ωx+\frac{π}{3})$的最小正周期为π,将函数$y=3sin(ωx+\frac{π}{3})$的图象向右平移$\frac{π}{2}$个单位长度,所得图象对应的函数( )
| A. | 在区间$[\frac{π}{12},\frac{7π}{12}]$上单调递减 | B. | 在区间$[\frac{π}{12},\frac{7π}{12}]$上单调递增 | ||
| C. | 在区间$[-\frac{π}{6},\frac{π}{3}]$上单调递减 | D. | 在区间$[-\frac{π}{6},\frac{π}{3}]$上单调递增 |
13.在如图所示的程序框图中,若输入的m=98,n=63,则输出的结果为( )

| A. | 9 | B. | 8 | C. | 7 | D. | 6 |