题目内容

9.已知x,y为正实数,则$\frac{2x}{x+2y}$+$\frac{y}{x}$的最小值为$\frac{3}{2}$.

分析 x、y为正实数,则$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2•\frac{y}{x}}$+$\frac{y}{x}$,令$\frac{y}{x}$=t>0,可得$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2t}$+t=$\frac{1}{\frac{1}{2}+t}$+$(t+\frac{1}{2})$-$\frac{1}{2}$,利用基本不等式的性质即可得出.

解答 解:∵x、y为正实数,则$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2•\frac{y}{x}}$+$\frac{y}{x}$,
令$\frac{y}{x}$=t>0,∴$\frac{2x}{x+2y}$+$\frac{y}{x}$=$\frac{2}{1+2t}$+t=$\frac{1}{\frac{1}{2}+t}$+$(t+\frac{1}{2})$-$\frac{1}{2}$≥$2\sqrt{(t+\frac{1}{2})•\frac{1}{t+\frac{1}{2}}}$-$\frac{1}{2}$=$\frac{3}{2}$,
当且仅当t=$\frac{1}{2}$时取等号.
∴$\frac{2x}{x+2y}$+$\frac{y}{x}$的最小值为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网