题目内容
用秦九韶算法求当x=1.032时多项式f(x)=3x2+2x+3的值时,需要m次乘法运算,n次加法运算,m,n分别为( )
| A、3,2 | B、4,3 |
| C、2,2 | D、2,3 |
考点:秦九韶算法
专题:算法和程序框图
分析:由秦九韶算法的原理,可以把多项式f(x)=3x2+2x+3变形计算出乘法与加法的运算次数.
解答:
解:∵f(x)=3x2+2x+3=((3x+2)x+3,
∴乘法要运算2次,加减法要运算2次.
故选:C.
∴乘法要运算2次,加减法要运算2次.
故选:C.
点评:本题考查秦九韶算法,考查在用秦九韶算法解题时一共会进行多少次加法和乘法运算,是一个基础题.
练习册系列答案
相关题目
已知复数z=1+ai(a∈R)(i是虚数单位)在复平面上表示的点在第四象限,且|z|=
,则a=( )
| 5 |
| A、2 | ||
| B、-2 | ||
C、
| ||
D、-
|
下列现象是随机事件的是( )
| A、天上无云下大雨 |
| B、同性电荷,相互排斥 |
| C、没有水分,种子发芽 |
| D、从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到1号签 |
各棱长均为a的三棱锥的表面积为( )
A、4
| ||
B、3
| ||
C、2
| ||
D、
|