题目内容

下列函数中,值域是(0,+∞)的共有
 
个.
①y=
2x-1
;②y=(
1
3
x-2;③y=
2-(
1
5
)
x
;④y=3^
1
x+1
分析:由2x-1≥0和幂函数的性质知,所有的定义域内的值都能取到,则①不是,同理由指数函数和幂函数的性质判断②是、③不是;再由分母不为零判断出y≠1即④不是.
解答:解:①、由2x-1≥0得,所以函数的值域是[0,+∞),故①不是;
②、由指数函数的性质知,函数的值域是(0,+∞),故②是;
③、由(
1
5
x
>0且2-(
1
5
x
≥0得,函数的值域是[0,2),故③不是;
④、因x+1≠0,所以y≠1,故④不是.
故答案为:1.
点评:本题的考点是函数的值域,考查了指数函数和幂函数的性质,求函数值域时应先求函数的定义域.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网