ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÍÖÔ²CµÄ³¤°ëÖ᳤Ϊ2£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=kx-$\sqrt{3}$ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬ÊÇ·ñ´æÔÚʵÊýkʹµÃÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾¹ý×ø±êÔµãO£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÉèÍÖÔ²µÄ½¹°ë¾àΪc£¬ÔòÓÉÌâÉ裬µÃ$\left\{{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{{\sqrt{3}}}{2}}\end{array}}\right.$£¬Çó³öÍÖÔ²CµÄ¼¸ºÎÁ¿£¬È»ºóÇó½âÍÖÔ²·½³Ì£®
£¨2£©´æÔÚʵÊýkʹµÃÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾¹ý×ø±êÔµãO£®ÀíÓÉÈçÏ£ºÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½«Ö±ÏßlµÄ·½³Ì$y=kx-\sqrt{3}$´úÈë$\frac{x^2}{4}+{y^2}=1$£¬ÀûÓÃΤ´ï¶¨ÀíÒÔ¼°ÏòÁ¿µÄÊýÁ¿»ý£¬×ª»¯Çó½â¼´¿É£®
½â´ð £¨1£©ÉèÍÖÔ²µÄ½¹°ë¾àΪc£¬ÔòÓÉÌâÉ裬µÃ$\left\{{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{{\sqrt{3}}}{2}}\end{array}}\right.$£¬½âµÃ$\left\{{\begin{array}{l}{a=2}\\{c=\sqrt{3}}\end{array}}\right.$£¬¡£¨2·Ö£©
ËùÒÔb2=a2-c2=4-3=1£¬¹ÊËùÇóÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®¡..£¨4·Ö£©
£¨2£©´æÔÚʵÊýkʹµÃÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾¹ý×ø±êÔµãO£®ÀíÓÉÈçÏ£º
ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½«Ö±ÏßlµÄ·½³Ì$y=kx-\sqrt{3}$´úÈë$\frac{x^2}{4}+{y^2}=1$£¬
²¢ÕûÀí£¬µÃ$£¨1+4{k^2}£©{x^2}-8\sqrt{3}x+8=0$£®£¨*£©¡£®£¨6·Ö£©
Ôò${x_1}+{x_2}=\frac{{8\sqrt{3}k}}{{1+4{k^2}}}$£¬${x_1}{x_2}=\frac{8}{{1+4{k^2}}}$£®¡£¨8·Ö£©
ÒòΪÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾¹ý×ø±êÔµãO£¬ËùÒÔ$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬¼´x1x2+y1y2=0£®
ÓÖ${y_1}{y_2}={k^2}{x_1}{x_2}-\sqrt{3}k£¨{x_1}+{x_2}£©+3$£¬ÓÚÊÇ$\frac{8}{{1+4{k^2}}}-\frac{{4{k^2}-3}}{{1+4{k^2}}}=0$£¬¡£®£¨10·Ö£©
½âµÃ$k=¡À\frac{{\sqrt{11}}}{2}$£¬¡..£¨11·Ö£©
¾¼ìÑéÖª£º´Ëʱ£¨*£©Ê½µÄ¡÷£¾0£¬·ûºÏÌâÒ⣮
ËùÒÔµ±$k=¡À\frac{{\sqrt{11}}}{2}$ʱ£¬ÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾¹ý×ø±êÔµãO£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²é´æÔÚÐÔÎÊÌâµÄ´¦Àí·½·¨£¬¿¼²é¼ÆËãÄÜÁ¦£®
| ¼Û¸ñx£¨Ôª/kg£© | 10 | 15 | 20 | 25 | 30 |
| ÈÕÐèÇóÁ¿y£¨kg£© | 11 | 10 | 8 | 6 | 5 |
£¨2£©ÀûÓã¨1£©ÖеĻع鷽³Ì£¬µ±¼Û¸ñx=40Ôª/kgʱ£¬ÈÕÐèÇóÁ¿yµÄÔ¤²âֵΪ¶àÉÙ£¿
²Î¿¼¹«Ê½£ºÏßÐԻع鷽³Ìy=bx+a£¬ÆäÖÐb=$\frac{{x}_{1}{y}_{1}+{x}_{2}{y}_{2}+¡{x}_{n}{y}_{n}-n\overline{x}\overline{y}}{{{x}_{1}}^{2}+{{x}_{2}}^{2}+¡{{x}_{n}}^{2}-n{\overline{x}}^{2}}$£¬a=$\overline{y}$-b$\overline{x}$£®
| A£® | ±ØÒª²»³ä·ÖÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |