题目内容
16.直线l⊥平面α,则经过l且和α垂直的平面( )| A. | 有1个 | B. | 有2个 | C. | 有无数个 | D. | 不存在 |
分析 由平面与平面垂直的判定定理得经过直线l的所有的平面都和平面α垂直.
解答 解:∵直线l⊥平面α,
∴由平面与平面垂直的判定定理得经过直线l的所有的平面都和平面α垂直,
∴经过l且和α垂直的平面有无数个.
故选:C.
点评 本题考查与已知平面垂直的平面的个数的判断,是基础题,解题时要认真审题,注意面面垂直判定定理的合理运用.
练习册系列答案
相关题目
1.一个俯视图为正方形的几何体的三视图如图所示,则该几何体的体积为( )

| A. | 2 | B. | $\frac{4}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
8.为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两类:1.到各班做宣传,倡议同学们积极捐献冬衣;2.整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示:
(Ⅰ)据此统计,你是否认为志愿者对工作的选择与其性别有关?
(Ⅱ)用分层抽样的方法在从参与整理、打包衣物工作的志愿者中抽取5人,再从这5人中选2人.那么至少有一人是女生的概率是多少?
参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
| 到班级宣传 | 整理、打包衣物 | 总计 | |
| 男生 | 12 | 12 | 24 |
| 女生 | 8 | 18 | 26 |
| 总计 | 20 | 30 | 50 |
(Ⅱ)用分层抽样的方法在从参与整理、打包衣物工作的志愿者中抽取5人,再从这5人中选2人.那么至少有一人是女生的概率是多少?
参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
| P(X2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
6.从6名学生中选出2名学生担任数学、物理课代表的选法有( )
| A. | 10种 | B. | 15种 | C. | 30种 | D. | 45种 |