题目内容
在正三棱锥中,,过A作三棱锥的截面,则截面三角形的周长的最小值为 .
下列命题中正确的是( )
A.若为真命题,则为真命题
B.“,”是“”的充分必要条件
C.命题“若,则或”的逆否命题为“若或,则”
D.命题,使得,则,使得
下列四个函数中,以为最小正周期,且在区间上单调递减函数的是( )
A. B. C. D.
学校生活区内建有一块矩形休闲区域ABCD,AB=100米,BC=50米,为了便于同学们平时休闲散步,学校后勤部门将在这块区域内铺设三条小路OE、EF和OF,考虑到学校整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且OE⊥OF,如图所示.
(1)设∠BOE=,试将△OEF的周长表示成的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为800元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.
在平面直角坐标系xOy中,双曲线的两条渐近线与抛物线y2=4x的准线相交于A,B两点.若△AOB的面积为2,则双曲线的离心率为 .
北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.
⑴据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
⑵为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
设为虚数单位,为正整数.
⑴证明:;
⑵结合等式“”证明:
.
已知椭圆C:+=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为.
(1)求椭圆C的方程;
(2)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.
设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点,线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )
A.-=1 B.+=1 C.-=1 D.+=1