题目内容
8.已知偶函数f(x)在(-∞,0]上满足:当x1,x2∈(-∞,0]且x1≠x2时,总有$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0$,则不等式f(x-1)≥f(x)的解集为$\{x∈R|x≤\frac{1}{2}\}$.分析 由题意可得f(x)在(-∞,0]上单调递减,故它在(0,+∞)上单调递增,故由由不等式f(x-1)≥f(x),可得|x-1|≥|x|,
解答 解:∵偶函数f(x)在(-∞,0]上满足:当x1,x2∈(-∞,0]且x1≠x2时,总有$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0$,
故f(x)在(-∞,0]上单调递减,故它在(0,+∞)上单调递增.
由不等式f(x-1)≥f(x),可得|x-1|≥|x|,∴(x-1)2≥x2,∴x≤$\frac{1}{2}$,
故答案为:$\{x∈R|x≤\frac{1}{2}\}$.
点评 本题主要考查函数的单调性和奇偶性的应用,属于基础题.
练习册系列答案
相关题目
18.函数f(x)=sinxcosx是( )
| A. | 周期为π的偶函数 | B. | 周期为π的奇函数 | ||
| C. | 周期为$\frac{π}{2}$的偶函数 | D. | 周期为$\frac{π}{2}$的奇函数. |
16.已知命题p,q,“命题p∨q真”是“命题p∧q真”的( )条件.
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
11.函数y=2sin(3x+φ)(|φ|<$\frac{π}{2}$)的一条对称轴为x=-$\frac{π}{12}$,则φ=( )
| A. | -$\frac{π}{4}$ | B. | -$\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |